Midterm 2: Math 20D Practice Final Exam

Instructor: Finley McGlade

You have 3 hours.

You are permitted the use of a scientific calculator and a double sided page of handwritten notes.

UNLESS THE QUESTION SPECIFICALLY SAYS OTHERWISE YOU MUST SHOW ALL YOUR WORKING.

Name \qquad

PID \qquad
"I have adhered to UCSD policies on academic integrity while completing this examination."

Signature \qquad

The exams consists of 10 pages (including the cover page) with four questions. The maximum possible score is $\mathbf{1 9 0}$ points. The first thing you should do when writing time begins is CHECK to make sure you have all 10 of the pages.

> Good luck!

Scratch Working Page

Problem 1. (30 Points) In parts (a) and (b) below we make reference to the equation

$$
\begin{equation*}
\frac{d y}{d t}=2 t \cos ^{2}(y) . \tag{1}
\end{equation*}
$$

(a) (20 points) Using separation of variable solve (1) subject to the initial condition $y(0)=\pi / 4$.
(b) (10 points) Solve (1) subject to the initial condition $y(0)=\pi / 2$.

Problem 2. (30 points)
(a) (15 points) Using the method of integrating factors, solve the intial value problem

$$
\frac{d y}{d x}+4 y-e^{-x}=0, \quad y(0)=\frac{4}{3}
$$

(b) (15 points) Solve the initial value problem in (a) via the method of Laplace transform.

Problem 3. (30 points)
(a) (20 points) Using the method of variation of parameters, find a particular solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{t} .
$$

(b) (10 points) Write down a general solution to the equation in (a).

Problem 4. (30 points) Using the method of Laplace transform solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t)+u(t-2), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Problem 5. (30 points) Find a general solution to the equation

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right) \mathbf{x}(t)
$$

where $\mathbf{x}(t)=\operatorname{col}\left(x_{1}(t), x_{2}(t)\right)$.

Problem 6. (40 points) A $1 / 4$-kg mass is attached to a spring with stiffness coefficient $8 \mathrm{~N} / \mathrm{m}$. The damping constant for the system is $2 N-s e c / m$. The mass is pushed 50 cm left of the equilibrium and given a leftward velocity of $2 \mathrm{~m} / \mathrm{sec}$. Determine the maximum leftward displacement attained by the mass.

Scratch Working Page

A TABLE OF LAPLACE TRANSFORMS

$f(t) \quad F(s)=\mathscr{L}\{f\}(s) \quad f(t) \quad F(s)=\mathscr{L}\{f\}(s)$

1. $f(a t)$	$\frac{1}{a} F\left(\frac{s}{a}\right)$	20. $\frac{1}{\sqrt{t}}$	$\frac{\sqrt{\pi}}{\sqrt{s}}$
2. $e^{a t} f(t)$	$F(s-a)$	21. \sqrt{t}	$\frac{\sqrt{\pi}}{2 s^{3 / 2}}$
3. $f^{\prime}(t)$	$s F(s)-f(0)$	22. $t^{n-(1 / 2)}, \quad n=1,2, \ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1) \sqrt{\pi}}{2^{n} s^{n+(1 / 2)}}$
4. $f^{(n)}(t)$ s	$s^{n} F(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)$	23. $t^{r}, \quad r>-1$	$\frac{\Gamma(r+1)}{s^{r+1}}$
	$-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0)$	24. $\sin b t$	$\frac{b}{s^{2}+b^{2}}$
5. $t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$	25. $\cos b t$	$\frac{s}{s^{2}+b^{2}}$
6. $\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(u) d u$	26. $e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$
7. $\int_{0}^{t} f(v) d v$	$\frac{F(s)}{s}$	27. $e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
8. $(f * g)(t)$	$F(s) G(s)$	28. $\sinh b t$	$\frac{b}{s^{2}-b^{2}}$
9. $f(t+T)=f(t)$	$\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}$	29. $\cosh b t$	$\frac{s}{s^{2}-b^{2}}$
10. $f(t-a) u(t-a), a \geq 0$	$0 \quad e^{-a s} F(s)$	30. $\sin b t-b t \cos b t$	$\frac{2 b^{3}}{\left(s^{2}+b^{2}\right)^{2}}$
11. $g(t) u(t-a), \quad a \geq 0$	$e^{-a s} \mathscr{L}\{g(t+a)\}(s)$	31. $t \sin b t$	$\frac{2 b s}{\left(s^{2}+b^{2}\right)^{2}}$
12. $u(t-a), a \geq 0$	$\frac{e^{-a s}}{s}$	32. $\sin b t+b t \cos b t$	$\frac{2 b s^{2}}{\left(s^{2}+b^{2}\right)^{2}}$
13. $\prod_{a, b}(t), \quad 0<a<b$	$\frac{e^{-s a}-e^{-s b}}{s}$	33. $t \cos b t$	$\frac{s^{2}-b^{2}}{\left(s^{2}+b^{2}\right)^{2}}$
14. $\delta(t-a), \quad a \geq 0$	$e^{-a s}$	34. $\sin b t \cosh b t-\cos b t \sinh b t$	$\frac{4 b^{3}}{s^{4}+4 b^{4}}$
15. $e^{a t}$	$\frac{1}{s-a}$	35. $\sin b t \sinh b t$	$\frac{2 b^{2} s}{s^{4}+4 b^{4}}$
16. $t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}$	36. $\sinh b t-\sin b t$	$\frac{2 b^{3}}{s^{4}-b^{4}}$
17. $e^{a t} t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}$	37. $\cosh b t-\cos b t$	$\frac{2 b^{2} s}{s^{4}-b^{4}}$
18. $e^{a t}-e^{b t}$	$\frac{(a-b)}{(s-a)(s-b)}$	38. $J_{v}(b t), v>-1$	$\frac{\left(\sqrt{s^{2}+b^{2}}-s\right)^{v}}{b^{v} \sqrt{s^{2}+b^{2}}}$
19. $a e^{a t}-b e^{b t}$	$\frac{(a-b) s}{(s-a)(s-b)}$		

